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Figure 1: Comparison between samples used in previous methods and ours. We take an action “wave” as an example. (a) Previous methods
assume that samples in both training and test sets share similar motion patterns. (b) In our method, samples in the test set contain novel motion
patterns, e.g. leg movements (named as “walking”), which are unobserved in the training set.

Abstract

Most skeleton-based action recognition methods assume that
the same type of action samples in the training set and the
test set share similar motion patterns. However, action sam-
ples in real scenarios usually contain novel motion patterns
which are not involved in the training set. As it is labori-
ous to collect sufficient training samples to enumerate various
types of novel motion patterns, this paper presents a practical
skeleton-based action recognition task where the training set
contains common motion patterns of action samples and the
test set contains action samples that suffer from novel mo-
tion patterns. For this task, we present a Mask Graph Convo-
lutional Network (Mask-GCN) to focus on learning action-
specific skeleton joints that mainly convey action informa-
tion meanwhile masking action-agnostic skeleton joints that
convey rare action information and suffer more from novel
motion patterns. Specifically, we design a policy network to
learn layer-wise body masks to construct masked adjacency
matrices, which guide a GCN-based backbone to learn stable
yet informative action features from dynamic graph structure.
Extensive experiments on our newly collected dataset ver-
ify that Mask-GCN outperforms most GCN-based methods
when testing with various novel motion patterns.

Introduction
Action recognition is of great importance to human-robot
interaction, which enables a robot to understand the mean-
ing of human movements. Existing work can be roughly
categorized into RGB-based methods (Tu et al. 2019; Liu
and Yuan 2018), depth-based methods (Chen et al. 2016),
and skeleton-based methods (Liu, Liu, and Chen 2017; Liu,
Meng, and Liang 2022). Compared with RGB data, skele-
ton representation of actions suffers less from clutter back-
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Table 1: Comparison of performances between state-of-the-art
CTR-GCN (Chen et al. 2021) method and ours on our newly col-
lected dataset, where test samples contain novel motion patterns,
using different protocols. (CS: cross subject; CV: cross view)

Method Year CS 1 CS 2 CV 1 CV 2
CTR-GCN 2021 46.90% 62.48% 44.46% 66.23%

Ours - 51.05% 66.90% 57.79% 73.00%

grounds and additionally encodes depth information (Zhang
et al. 2022; Tu et al. 2022). Compared with depth data,
skeleton data directly capture human body structure mean-
while having less redundant information. Moreover, skele-
ton data can be accessed in real-time with the spread of
depth sensors. Therefore, skeleton-based action recognition
has attracted increasing attention (Yan, Xiong, and Lin 2018;
Chen et al. 2021).

Skeleton-based action recognition methods assume that
the same type of action samples in the training set and the
test set share similar motion patterns. This ideal assumption
is widely adopted by existing skeleton-based action recog-
nition datasets (Wang et al. 2014; Chen, Jafari, and Kehtar-
navaz 2015; Shahroudy et al. 2016; Wang et al. 2020), in-
cluding the most popular dataset, i.e., NTU RGB+D dataset.
We take an action “wave” as an example. The training and
test samples used in previous methods are shown in Fig. 1
(a). They contain similar motion patterns, i.e., raising one
hand and moving the hand from one side to another. Mean-
while, remaining body parts, e.g., legs, keep nearly still.

Practical Problem: Compared with samples in Fig. 1 (a),
action samples in real scenarios are more complex. We ob-
serve that action samples usually contain novel motion pat-
terns which are not involved in the training set. We take an
action “wave” from our newly collected dataset as an exam-
ple. The training and test samples used in our method are
shown in Fig. 1 (b), where the test sample contains novel



Figure 2: Pipeline of mask graph convolution, which contains
three blocks, namely “AMG”, “S-Conv” and “AMMG”. Specifi-
cally, AMG is short for Adjacency Matrix Generation. S-Conv is
short for Spatial Convolution. AMMG is short for Adjacency Ma-
trix Mask Generation. We follow graph convolution to use AMG
block for generating adjacency matrix and to use S-Conv block
for spatial feature learning. Different from graph convolution, we
present AMMG to generate an adjacency matrix mask, which
guides the adjacency matrix to learn channel-wise local features.

motion patterns, e.g. leg movements, which are unobserved
in our training set. One natural question arises: How do the
novel motion patterns in the test stage affect the existing
skeleton-based action recognition methods?

We answer this question by evaluating the state-of-the-
art CTR-GCN (Chen et al. 2021) method on our dataset.
Despite that CTR-GCN dominates current skeleton-based
action recognition methods, CTR-GCN only achieves infe-
rior results in Table 1. To explain these results, we carefully
analyze the network architecture of CTR-GCN. In general,
this kind of GCN-based method typically stacks multi-layer
graph convolution for feature extraction. Each graph convo-
lution uses an Adjacency Matrix Generation (AMG) block
for generating adjacency matrix and uses a Spatial Convo-
lution (S-Conv) block for spatial feature learning and fi-
nally uses channel-wise multiplication operation to fuse ad-
jacency matrix and spatial feature. Since the adjacency ma-
trix is built upon all skeleton joints, it suffers from novel mo-
tion patterns in test samples. As the adjacency matrix domi-
nates the function of graph convolution, the noisy adjacency
matrix naturally induces the inferior performance of GCN.

Our Solution: To solve the limitation of GCN-based
methods on this challenging problem setting, we first divide
skeleton joints into two categories, namely action-specific
joints which mainly convey action information, and action-
agnostic joints which present rare action information. As
shown in Fig. 1 (b), we observe that people mainly use
action-specific skeleton joints to perform actions meanwhile
use action-agnostic skeleton joints to generate novel motion
patterns. Inspired by this observation, we present a mask
graph convolution that focuses on learning action-specific
skeleton joints meanwhile masking action-agnostic joints. In
this way, we can learn motion patterns from actions and suf-
fer less from novel motion patterns. Specifically, to solve the
defect of the traditional adjacency matrix, we take advantage
of the general GCN method and present a Mask GCN frame-
work by stacking multi-layer mask graph convolution. Fig. 2
shows the pipeline of our proposed mask graph convolution.
It also highlights that mask graph convolution differs from
common graph convolution by involving a new Adjacency
Matrix Mask Generation (AMMG) block, which generates

a channel-wise mask to guide an adjacency matrix to learn
stable yet informative spatial features. Our main contribu-
tions are summarized as three-fold.
• To facilitate action recognition in real applications, we

present a practical skeleton-based action recognition
task, which introduces novel motion patterns into test
samples. To bridge the gap between training and test
samples, we present a Mask-GCN framework that uses
multiple mask graph convolution layers for deep feature
learning from action-specific skeleton joints.

• To implement our Mask-GCN, we develop an Adjacency
Matrix Mask Generation (AMMG) block for learning
action-dependant adjacency matrix mask. Specifically, a
Policy Network (PN) is designed to aggregate global and
local features from an input feature, and Gumbel Soft-
max is used to generate a body mask, based on which we
formulate the adjacency matrix mask.

• We collect the first large-scale dataset for evaluating
different methods of handling novel motion patterns. It
serves as a new benchmark to facilitate the research in
this direction. Extensive experiments on our dataset ver-
ify the effectiveness of our Mask-GCN by outperforming
most GCN-based action recognition methods.

Related Work
This section reviews skeleton-based action recognition
methods, including traditional methods and Graph Convo-
lutional Network-based methods, among which topology
learning-based methods are detailed.

Traditional Methods
An end-to-end hierarchical RNN (Du, Wang, and Wang
2015) was proposed to model the long-term contextual
information of skeleton sequences. Based on RNN, a
Spatio-temporal LSTM (Liu et al. 2016) was presented to
encode hidden information of skeleton over both spatial
and temporal domains concurrently. On top of RNN, a
spatial and temporal attention model (Song et al. 2017)
was also proposed to selectively focus on discriminative
joints. To enhance the sequential modeling ability of RNN,
a spatial-temporal transformer network (Plizzari, Cannici,
and Matteucci 2021) was used to understand intra-frame
interactions between different body parts and to model
inter-frame correlations. Another spatial-temporal special-
ized transformer (Zhang et al. 2021) was also used to model
skeleton sequences in spatial and temporal dimensions
respectively. Instead of using a sequential modeling net-
work, a CNN model (Du, Fu, and Wang 2015) was used to
model the hidden spatial-temporal information of skeleton
sequences from an image, which is the concatenation of
the joint coordinates. Moreover, multiple images (Ke et al.
2017; Liu, Liu, and Chen 2017) were also used as inputs
of CNN models to extract spatial-temporal skeleton features.

GCN-based Methods
Noticing that a skeleton sequence is a graph, a Spatial-
Temporal Graph Convolutional Network (ST-GCN) (Yan,



Xiong, and Lin 2018) was proposed to model dynamic
skeletons, which moves beyond the limitations of previous
methods by automatically learning spatial and temporal
patterns. To improve the inference speed of ST-GCN, a sim-
ple yet effective semantics-guided neural network (SGN)
(Zhang et al. 2020) was proposed to describe a long-term
skeleton sequence as multiple short-term sequences. Based
on SGN, an adaptive SGN (Shi et al. 2021) was developed
to further reduce the computational cost of the inference
process by adaptively controlling the number of skeleton
joints on-the-fly. Instead of modifying inputs, the regular
GCN structure was improved to formulate an efficient shift
graph convolutional network (Shift-GCN) (Cheng et al.
2020b), which is composed of novel shift graph operations
and lightweight point-wise convolutions. To improve the
performance of ST-GCN, a directed graph neural networks
(Shi et al. 2019a) was proposed to represent the skeleton
data as a directed acyclic graph based on the kinematic de-
pendency between the joints and bones in the natural human
body. To capture part-level information, a part-level graph
convolutional network (Huang et al. 2020a) was developed,
which uses a graph pooling operation to automatically
aggregate body joints into body parts. Noting that previous
GCN methods separately encode spatial and temporal
information, unified graph convolutions (Liu et al. 2020)
were developed to extract spatial-temporal features at the
same time. Besides, Bayesian inference (Zhao et al. 2019),
attention mechanism (Si et al. 2019), residual connection
(Song et al. 2020), and context encoding (Zhang, Xu, and
Tao 2020) were jointly used with GCN to explore more
discriminate features.

Topology Learning
Recent work focuses on designing an adjacency matrix so
that the graph convolution network can effectively learn
topology information. Instead of using a single adjacency
matrix, multiple high-order adjacency matrices (Huang et al.
2020b) can be used in an inception module. Rather than
design hand-crafted adjacency matrix, actional-structural
graph convolutional network (Li et al. 2019), two-stream
adaptive graph convolutional network (Shi et al. 2019b) and
dynamic graph convolutional network (Ye et al. 2020) used
data-driven adjacency matrix that can be optimized through
backward propagation. Inspired by CNN which uses an in-
dependent spatial aggregation kernel for every channel to
capture different spatial information, the decoupling graph
convolutional network (Cheng et al. 2020a) adopted an in-
dependent adjacency matrix for every channel to boost the
graph modeling ability with no extra computation. To reduce
the difficulty of modeling channel-wise topologies, channel-
wise topology refinement graph convolution (CTR-GCN)
(Chen et al. 2021) models channel-wise topologies by learn-
ing a shared topology as a generic prior for all channels and
then refining it with channel-specific correlations for each
channel. Our method differs from CTR-GCN in several as-
pects. First, we design a mask-guided adjacency matrix for
topology learning from action-specific skeleton joints. Sec-
ond, we develop a policy network using local and global

modeling for implementing our adjacency matrix mask gen-
eration block. Moreover, experimental results verify that our
method outperforms CTR-GCN by a large margin in han-
dling novel motion patterns in the test stage.

Mask Graph Convolutional Network
Mask Graph Convolutional Network (Mask-GCN) consists
of multiple Mask Graph Convolution (Mask-GC) layers. In
the following, we first introduce the general idea of Mask-
GC, then detail the Adjacency Matrix Mask Generation
(AMMG) block to implement the Mask-GC, and finally for-
mulate the Mask-GCN framework for practical skeleton-
based action recognition.

Mask-GC. A human skeleton is naturally a graph, where
vertices are joints and edges are bones. To describe the
graph, Graph Convolutional Network (GCN) has achieved
high success. GCN involves multiple graph convolutions,
where each graph convolution contains two main steps,
namely, spatial feature learning and global topology learn-
ing. Global topology learning is used to further enhance the
extracted spatial features. Suppose a GCN contains M graph
convolutions. Taking the m-th graph convolution as an ex-
ample, its operation is formulated as:

Xm+1 = E
(
S(Xm), Am

)
, (1)

where m ∈ (0, ...,M − 1), Xm is the input feature, and
Xm+1 is the output feature that is used for next graph convo-
lution. When m equals 0, Xm is the input skeleton sequence.
Otherwise, Xm is the output of the previous graph convo-
lution. S is the spatial convolution operation that is used
for spatial feature learning. E is the aggregation operation
which is combined with an adjacency matrix Am for global
topology learning. Each element of the adjacency matrix re-
flects the correlation strength between pairwise joints. The
original adjacency matrix is defined according to the phys-
ical connections between joints. Recent work verifies that
the adjacency matrix can be directly learned from the input
feature. The learned adjacency matrix can be shared by dif-
ferent channels of S(Xm). Moreover, the channel-specific
adjacency matrix can be directly learned from the input fea-
ture, which achieves state-of-the-art results on the skeleton-
based action recognition task.

Our Mask-GC is built upon the channel-specific adja-
cency matrix. The data flow of the mask graph convolu-
tion is shown in Fig. 2, which contains a S-Conv (Spatial
Convolution) block, an AMG (Adjacency Matrix Genera-
tion) block and an AMMG (Adjacency Matrix Mask Gen-
eration) block. The combination of the S-Conv block and the
AMG block implements the standard graph convolution op-
eration. Our motivation is to use the AMMG block to con-
strain the reception field of adjacency matrices extracted by
the AMG block. Multiple mask graph convolutions are used
to implement a Mask Graph Convolutional Network (Mask-
GCN). Suppose a Mask-GCN contains M mask graph con-
volutions. Taking the m-th mask graph convolution as an
example, its operation is defined as:

Xm+1 = E
(
S(Xm), Am · M(Xm)

)
, (2)



Figure 3: Illustration of our proposed Adjacency Matrix Mask
Generation (AMMG) block, which consists of a Policy Network
(PN) block and Dimensional Expansion (DE) operation.

where M is the function of AMMG block, M(Xm) is the
adjacency matrix mask, and other operations and variables
are defined following Eq. (1). We follow CTR-GCN (Chen
et al. 2021) to implement the S-Conv block and AMG block.
Specifically, S-Conv takes Xm as input and outputs S(Xm).
Let Xm = [J × Tm × Cm], where “[ ]” denotes a vector, J
is the joint number of a skeleton, Tm is the temporal dimen-
sion and Cm is the spatial dimension. Specially, the input
feature for the 0-th graph convolution is X0 = [J×T0×C0],
where T0 is the length of the skeleton sequence, C0 equals 3,
which denotes three coordinates of skeleton joints. The out-
put feature vector S(Xm) can be denoted as [J ×Tm×Cn].
Generally, S-Conv extracts deeper spatial features for each
spatial-temporal joint and extends the feature channel num-
ber from Cm to Cn. We can use 1 × 1 convolution to im-
plement S-Conv. AMG takes Xm as input and outputs the
learnable adjacency matrix Am. The key idea of construct-
ing Am is to measure the correlation of pairwise joints, e.g.,
the p-th joint and the q-th joint, where p and q belong to
(0, ..., J −1). For the p-th joint, the corresponding feature is
Xm,p = [1×Tm×Cm]. Noting that the temporal dimension
contains redundant information, we further expand the spa-
tial dimension and then compress the temporal dimension to
obtain a more representative joint feature, which is denoted
as X

′

m,p = [1 × Ch], where Ch is the new channel number.
Similarly, the q-th joint can be denoted as X

′

m,q = [1×Ch].
The correlation score is calculated as tanh(X

′

m,p − X
′

m,q),
where tanh activation function is used to mapping the corre-
lation score to the scope of [−1, 1]. By concatenating corre-
lation scores of all pairs, we can obtain a correlation matrix,
which can be denoted as [J × J ×Ch]. We further use 1× 1
convolution to map the correlation matrix to the adjacency
matrix [J × J × Cn].

AMMG. As a core component of Mask-GC, our pro-
posed AMMG (Adjacency Matrix Mask Generation) block
mainly consists of a PN (Policy Network) block and a DE
(Dimensional Expansion) operation. The general pipeline of
AMMG is illustrated in Fig. 3, which can be formulated as:

M(Xm) = D
(
B(Xm)

)
, (3)

where B denotes function of PN block and D denotes the
function of the DE operation.

PN is a policy network that takes a deep feature Xm =
[J × Tm × Cm] as input and outputs a body mask Bm =
[J × 1]. Specifically, local modeling is firstly applied on Xm

to aggregate information across different channels, and gen-
erate a new feature [J×Tm×2]. Simple 1x1 convolution can
be used to implement the local modeling function. Second,
we use temporal pooling to aggregate information across the
temporal axis, and obtain a new feature Pm = [J × 2]. For
the j-th row, the feature Pm,j = [1× 2] indicates the proba-
bility of selecting each skeleton joint. We can obtain the dis-
crete actions to select skeleton joints through argmax. Con-
sidering that argmax is not differentiable, we introduce the
Gumbel Softmax trick (Jang, Gu, and Poole 2016) to solve
this problem. In the forward stage, we calculate action as:

am,j = argmax
i

(Pi
m,j +Gi

m,j), (4)

where am,j denotes the action for the j-th joint in the m-th
layer. When am,j equals one, Bm,j is set to one. Otherwise,
Bm,j is set to zero. Gi

m,j is defined as:

Gi
m,j = −log(−logU i

m,j), (5)

where U i
m,j is sampled from a uniform i.i.d distribution –

Uniform(0, 1). In the back-propagation stage, we use the
continuous Gumbel Softmax to relax Eq. (4) as:

ãm,j =
exp(Pi

m,j +Gi
m,j)/τ∑

k

exp(Pk
m,j +Gk

m,j)/τ
, (6)

where τ is the temperature parameter. When τ is set to a
small value, samples from the Gumbel Softmax are close to
one hot vector. Otherwise, the variance of samples’ gradients
from Gumbel Softmax becomes small. We select the proper
value for τ by ablation studies on our dataset.

Besides using local modeling for generating features to
indicate the probability of selecting each skeleton joint,
we also provide an alternative way that takes advantage
of global modeling. Specifically, the input feature Xm =
[J ×Tm×Cm] is firstly compressed by temporal pooling to
generate a compact feature [J×Cm]. Then, global modeling
is applied to this feature to further aggregate global infor-
mation across different channels and generate a new feature
Pm,j = [1 × 2], which is an alternative to the branch that
uses local modeling. Noting that we use a selective passing
mechanism to determine which feature is selected. The fol-
lowing Gumbel Softmax operation remains unchanged.

DE is a dimensional expansion operation that is used to
generate adjacency matrix mask [J × J × Cn] from Bm,
which can be formulated as:

D(Bm) = [

Cn︷ ︸︸ ︷
Bm × B−1

m ||...||Bm × B−1
m ], (7)

where || is the concatenate operation.
Mask-GCN. The pipeline of Mask-GCN (Mask Graph

Convolutional Network) is shown in Fig. 4. We first use the
batch normalization layer to normalize the input skeleton se-
quence, then use multiple feature extraction blocks to extract
deep features, and finally use a fully connected (FC) layer



Figure 4: Illustration of our proposed Mask-GCN

Figure 5: Pipeline of collecting our dataset with three cameras. To
simplify description, we just show one snap captured by camera 3.

for the classification task. Each feature extraction block con-
sists of a mask graph convolution and a T-Conv operation
which denotes temporal convolution. We follow CTR-GCN
(Chen et al. 2021) to implement the T-Conv, which contains
four branches and each contains a 1 x 1 convolution to re-
duce channel dimension. The first branch uses 5 x 1 con-
volution with dilation equals 1. The second branch uses 5 x
1 convolution with dilation equals 2. The third branch uses
3 x 1 convolution and max pooling. The mask graph con-
volution extracts spatial features from normalized skeleton
sequences. Then T-Conv further extracts temporal features.
Batch normalization is used between the mask graph convo-
lution and T-Conv to alleviate the overfitting problem. ReLU
is used before and after T-Conv to increase the non-linear
fitting capability. Residual connection is applied before and
after T-Conv to avoid the degradation problem of the deep
neural network. After applying multiple feature extraction
blocks, the extracted deep feature is processed by an FC
layer to generate a prediction value for each action type. The
dropout layer is used before the FC layer to avoid overfitting.

Dataset. To evaluate our method, we use the pipeline
shown in Fig. 5 to collect a new dataset. There are 21780 3D
skeleton sequences in our dataset. Each action was repeat-
edly performed by 22 subjects 5 times and was observed by
three Kinect V2 sensors from different viewpoints. These
sensors are fixed on a robot platform to capture different
robot views. Our dataset contains 10 types of actions, i.e.,
“clockwise”, “counterclockwise”, “keepClose”, “keepFar”,
“left”, “right”, “nod”, “shake”, “raiseUp”, “wave”, and 5
types of novel motion patterns, i.e., “walking”, “sitDown”,
“standUp”, “squat”, “squatUp”. Noting that novel motion
patterns have various types, we just adopt 5 typical types
as an example. Our training set contains samples with 10
types of actions. Our testing set contains samples with a
mixture of actions and novel motion patterns. Taking action
“nod” as an example, our training set only contains samples
with action “nod”. Our test set contains samples that action
“nod” and novel motion patterns concurrently happen, i.e.,

Figure 6: Randomly selected snaps from our dataset

Table 2: Comparison between our dataset and others, where “S”
stands for noise from depth sensors, “P” stands for noise from pose
estimation methods, and “NMP” stands for novel motion patterns.

Dataset Sample Noise
MSR-Action3D (Li, Zhang, and Liu 2010) 567 S+P

CAD-60 (Sung et al. 2011) 60 S+P
MSRDailyActivity3D (Wang et al. 2012) 320 S+P

UTKinect (Xia, Chen, and Aggarwal 2012) 200 S+P
Berkeley MHAD (Ofli et al. 2013) 660 S

CAD-120 (Koppula, Gupta, and Saxena 2013) 120 S+P
MSRAction-Pair (Oreifej and Liu 2013) 360 S+P
Northwestern-UCLA (Wang et al. 2014) 1475 S+P

UWA3D Multiview (Rahmani et al. 2014) 900 S+P
UTD-MHAD (Chen, Jafari, and Kehtarnavaz 2015) 861 S+P

UWA3D Multiview II (Rahmani et al. 2016) 1075 S+P
NTU RGB+D (Shahroudy et al. 2016) 56880 S+P

PKU-MMD (Liu et al. 2017) 1076 S+P
RGB-D Varying-view (Ji et al. 2018) 25600 S+P

EV-Action (Wang et al. 2020) 7000 S
IKEA ASM (Ben-Shabat et al. 2021) 16764 S+P

Our newly collected dataset 21780 S+P+NMP

“nod + walking”, “nod + sitDown”, “nod + standUp”, “nod +
squat”, “nod + squatUp”. Noting that novel motion patterns
are invisible in the training phrase, therefore multi-label ac-
tion recognition task cannot be used for this task.

Table 2 compares our dataset with the existing datasets
for the skeleton-based action analysis task. As can be seen,
the scale of our dataset is comparable with recent RGB-D
Varying-view (Ji et al. 2018) and IKEA ASM (Ben-Shabat
et al. 2021) datasets. In our dataset, each action type contains
more than 1k samples, which ensures sufficient training and
test samples. Moreover, our dataset contains three types of
noise, i.e., “S”, “P” and “M”, where “S” stands for noise
from depth sensors, “P” stands for noise from pose estima-
tion methods, and “NMP” stands for novel motion patterns.
While, most previous datasets only suffer from two types
of noise, i.e., “S” and “P”. Instead of using pose estima-
tion methods to estimate skeleton joints from depth sensors,
Berkeley MHAD (Ofli et al. 2013) and EV-Action (Wang
et al. 2020) use wearing sensors to generate skeleton joints,
therefore these datasets do not contain noise from pose es-
timation methods. Compare with previous datasets, samples
in our test set to contain more noise. As shown in Fig. 6 (b),
these are randomly selected snaps from samples indicating
action “wave”, where the target motion patterns of “wave”
suffers severe effect from novel motion patterns.



Table 3: Comparison of per action recognition accuracy between CTR-GCN and ours

Protocol CS 1 CS 2 CV 1 CV 2
Action Type CTR-GCN Ours CTR-GCN Ours CTR-GCN Ours CTR-GCN Ours
clockwise 51.16% 66.86% 96.00% 98.00% 59.77% 83.55% 86.76% 89.89%

counterclockwise 62.21% 66.08% 80.54% 83.22% 66.34% 76.00% 79.58% 91.60%
keepClose 65.64% 63.36% 51.72% 46.90% 46.51% 63.64% 67.72% 66.79%
keepFar 52.95% 59.55% 71.23% 82.19% 78.50% 54.55% 70.46% 69.36%

left 64.34% 54.36% 88.00% 85.33% 55.41% 70.87% 79.39% 77.67%
right 36.54% 44.56% 48.32% 42.95% 48.04% 48.81% 70.92% 81.61%
nod 1.97% 2.56% 14.19% 14.19% 11.23% 49.42% 41.02% 42.72%

shake 32.53% 30.57% 6.04% 48.99% 0.09% 9.24% 0.00% 32.65%
raiseUp 48.72% 54.42% 89.58% 84.03% 36.02% 60.24% 77.34% 90.23%

wave 52.89% 68.17% 79.19% 83.22% 42.74% 61.55% 89.09% 87.48%
Average 46.90% 51.05%+4.15 62.48% 66.90%+4.42 44.46% 57.79%+13.33 66.23% 73.00%+6.77

Table 4: Comparison of performances against novel motion patterns (short for NMP) between CTR-GCN and ours

Protocol CS 1 CS 2 CV 1 CV 2
NMP CTR-GCN Ours CTR-GCN Ours CTR-GCN Ours CTR-GCN Ours

walking 41.58% 46.88% 60.49% 66.46% 51.85% 59.40% 57.71% 59.90%
sitDown 51.64% 51.73% 65.00% 64.00% 46.28% 55.78% 72.25% 76.94%
standUp 45.37% 52.48% 60.07% 65.02% 40.47% 59.76% 72.02% 75.82%

squat 54.04% 57.00% 68.57% 74.57% 44.76% 56.83% 69.65% 78.81%
squatUp 41.47% 46.73% 57.70% 64.22% 39.36% 57.40% 59.15% 73.04%

Experiments
We evaluate existing state-of-the-art skeleton-based action
recognition methods and our proposed method on the newly
collected dataset. Four types of evaluation protocols are
performed, i.e., cross-subject recognition with low train-
ing data (CS 1), cross-subject recognition with more train-
ing data (CS 2), cross-view recognition with low train-
ing data (CV 1), cross-view recognition with more training
data (CV 2). Specifically, CS 1 uses 10 subjects for train-
ing, CS 2 uses 20 subjects for training, CV 1 uses 1 view
for training, and CV 2 uses 2 views for training. We re-
port evaluation results of ST-GCN (Yan, Xiong, and Lin
2018) (AAAI 2018), CTR-GCN (Chen et al. 2021) (CVPR
2021) and info-GCN (Chi et al. 2022) (CVPR 2022), as
these methods are either typical methods or currently the
best methods for skeleton-based action recognition task. Our
method is most comparable with CTR-GCN (Chen et al.
2021), as both methods use the same channel-wise topol-
ogy refinement method for graph convolution and the same
temporal convolution for temporal information aggregation.
We use “Ours (Global)” to denote our proposed Mask-
GCN with global modeling for implementing policy net-
work. “Ours (Local)” denotes our proposed Mask-GCN with
local modeling for implementing policy network. “Ours
(Global & Local)” denotes our proposed Mask-GCN with
both global and local modeling for implementing policy net-
work. As “Ours (Local)” achieves the best performance, we
use it as the final solution, which is short for “Ours”.

Comparisons with State-of-the-arts
Table 3 compares our method with CTR-GCN, and reports
the recognition accuracy for each action and also reports
the mean recognition accuracy for all actions. Our method
achieves a mean accuracy of 51.05% using CS 1 protocol,
which is 4.15% higher than CTR-GCN. Our method also

achieves a mean accuracy of 66.90% using CS 2 protocol,
which is 4.42% higher than CTR-GCN. These results ver-
ify three aspects. First, despite the superior performances
of CTR-GCN on traditional skeleton-based action recogni-
tion task, its performance on our dataset is far from satis-
factory. On the NTU RGB+D dataset, CTR-GCN achieves
an accuracy of nearly 90% using the cross-subject proto-
col. While, on our dataset, CTR-GCN only achieves an
accuracy of 46.90% using CS 1 protocol and achieves an
accuracy of 62.48% using CS 2 protocol. The main rea-
son comes from the gap between training and test sam-
ples. The imperfect performances of CTR-GCN reflect that
our dataset is more challenging than the existing datasets.
Second, our method achieves obvious improvements over
CTR-GCN, which verifies the effectiveness of our proposed
mask graph convolution operation. Taking action “clock-
wise” as an example, our method achieves an accuracy of
66.86%, meanwhile, CTR-GCN only achieves an accuracy
of 51.16%. Taking action “counterclockwise” as another ex-
ample, our method achieves an accuracy of 66.08%, mean-
while CTR-GCN achieves an accuracy of 62.21%. Gener-
ally, our method outperforms CTR-GCN on most action
types including “clockwise”, “counterclockwise”, “keep-
Far”, “right”, “nod”, “raiseUp” and “wave”. Third, our
method achieves better results on CS 2 protocol than CS 1
protocol, which reflects that using more training data fa-
cilities the recognition task. Table 4 compares our method
with CTR-GCN, and reports the recognition accuracy for
all actions affected by novel motion patterns. Our method
achieves a mean accuracy of 46.88% using CS 1 protocol,
which is 4.14% higher than CTR-GCN. Taking one type of
novel motion patterns as an example, CTR-GCN achieves
an accuracy of 41.58% on testing samples that are affected
by novel motion patterns of “walking”. Compared with
CTR-GCN, our method achieves an accuracy of 46.88%,
which outperforms CTR-GCN by 5.30%. Our method also



Table 5: Comparison between the state-of-the-arts and ours

Method CS 1 CS 2 CV 1 CV 2
ST-GCN (Yan, Xiong, and Lin 2018) 49.82% 61.73% 53.18% 68.94%

CTR-GCN (Chen et al. 2021) 46.90% 62.48% 44.46% 66.23%
info-GCN (Chi et al. 2022) 49.80% 70.93% 46.35% 65.95%

Ours (Global) 51.37% 65.79% 45.53% 68.81%
Ours (Local) 51.05% 66.90% 57.79% 73.00%

Ours (Global & Local) 51.25% 64.84% 56.53% 72.08%

clockwise 66.86% 0.12% 9.70% 15.23% 0.12% 2.18% 0.00% 0.00% 2.67% 2.55%

counterclockwise 1.40% 66.08% 13.36% 5.57% 1.63% 3.32% 0.00% 0.11% 2.79% 4.98%

keepClose 3.37% 1.17% 63.36% 15.80% 0.70% 5.84% 0.00% 0.11% 3.26% 6.60%

keepFar 3.72% 1.41% 21.92% 59.55% 1.05% 4.93% 0.00% 0.00% 3.60% 4.28%

left 4.88% 1.06% 14.50% 6.25% 54.36% 4.01% 0.00% 0.34% 3.72% 10.42%

right 5.12% 0.59% 9.59% 28.64% 0.81% 44.56% 0.00% 0.23% 3.02% 7.41%

nod 1.51% 0.35% 32.65% 10.68% 3.95% 7.10% 2.56% 29.66% 6.28% 4.05%

shake 1.98% 0.23% 31.16% 11.82% 3.25% 8.71% 1.63% 30.57% 5.12% 5.32%

raiseUp 1.63% 1.29% 27.40% 1.59% 0.35% 2.75% 0.00% 0.00% 54.42% 9.95%

wave 3.14% 1.88% 11.19% 7.05% 1.74% 3.67% 0.00% 0.23% 2.67% 68.17%
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aveFigure 7: Confusion matrix of our method using CS 1 protocol

achieves a mean accuracy of 66.85% using CS 2 protocol,
which is 4.48% higher than CTR-GCN. These improve-
ments show that our method can recognize actions that are
severely affected by novel motion patterns, while previous
skeleton-based action recognition method finds difficulty in
directly using a well-trained model on test samples with
novel motion patterns. Table 5 compares our method with
ST-GCN (Yan, Xiong, and Lin 2018), CTR-GCN (Chen
et al. 2021), and info-GCN (Chi et al. 2022). We find an
interesting phenomenon that ST-GCN achieves comparable
results with the most recent CTR-GCN and info-GCN meth-
ods. We infer that complex networks that perform well on
skeleton-based action recognition task may show poor gen-
eralization probability to handle novel motion patterns. Our
method with local modeling for implementing policy net-
work is short for Ours (Local), which outperforms ST-GCN
and CTR-GCN by a large margin using all kinds of proto-
cols. Our method also outperforms info-GCN using CS 1,
CV 1, and CV 2 protocols. The confusion matrix of our
method using CS 1 protocol is shown in Fig. 7, where the
accuracy of most actions is above 50%. The action “nod”
and “shake” are difficult cases since their motion patterns
are weak and therefore can be easily destroyed by noises.

Ablation Studies

We first evaluate the effect of our proposed AMMG
block. Our model achieves accuracy of 51.05% using CS 1
protocol and achieves accuracy of 66.90% using CS 2
protocol. After removing AMMG block, the performance of
our model drops by nearly 4% using either CS 1 protocol or
CS 2 protocol. Second, we evaluate different designs for im-
plementing our policy networks. As shown in Table 5, Ours
(Local) outperforms Ours (Global & Local). We infer that
a complex policy network may cause overfitting. Ours (Lo-
cal) outperforms Ours (Global) using CS 2, CV 1, and CV 2
protocols. Therefore, we choose the policy network with lo-
cal modeling as our solution. Noting that, our method using
all these policy networks outperforms the performances of
CTR-GCN, which verifies the effectiveness of using policy
networks for generating adjacency matrix masks.

Figure 8: Visualization of feature maps and masked skeleton
joints of action “keepClose” with novel motion patterns “walking”.
Masked skeleton joints are colored in black. Although skeleton
joints are noisy (due to self-occlusions), our method suffers less
by ignoring masked skeleton joints.

Parameter Selection & Feature Visualization
We evaluate the effect of parameter τ on the performance
of Gumbel Softmax. We set τ to 0.1, 0.01 and 0.001, and
find that the performance raises from 50.32% to 51.05% and
then drops to 33.52%. We infer that a smaller value of τ ben-
efits the Gumbel Softmax to generate one-hot-like vectors,
therefore the performance raises when τ changes from 0.1
to 0.01. Since training with a much smaller value of τ is dif-
ficult, the performance drops when τ changes from 0.01 to
0.001. We set τ to 0.01 as the default for our policy network.

Fig. 8 takes an action “keepClose” which is affected
by novel motion patterns “walking” as an example and
shows the visualization of feature maps and masked skele-
ton joints. Fig. 8 (a) is the input feature map for our policy
network located in the first mask convolution layer. After
local modeling and Gumbel Softmax, our policy network
selects skeleton joints that are colored in red (masked
skeleton joints are colored in black). As can be seen, most
action-specific skeleton joints are preserved. Noting that for
most cases of action “nod” and “shake”, our policy network
finds it difficult to capture action-specific skeleton joints,
which explains the poor accuracy of our method (see Fig.
7) in recognizing these two actions.

Conclusion
This paper presents a Mask Graph Convolutional Network
(Mask-GCN) framework to handle novel motion patterns
in a practical skeleton-based action recognition task. Our
Mask-GCN takes advantage of a new Adjacency Matrix
Mask Generation (AMMG) block to learn action-dependant
adjacency matrix mask, which guides graph convolution to
learn spatial features from action-specific skeleton joints and
to block disturbing from action-agnostic skeleton joints. We
collect a challenging dataset and set up different protocols
for evaluation. Extensive experiments on our dataset verify
the effectiveness of our proposed Mask-GCN, which outper-
forms the most related CTR-GCN method by a large margin
and also achieves comparable results with the state-of-the-
art info-GCN method using most protocols.
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